Interstices


  Découvrir

Le cœur numérique

Pour percer les secrets du cœur, organe longtemps resté mystérieux, des informaticiens, physiciens et biologistes cherchent à simuler son fonctionnement par ordinateur. Objectif supplémentaire : personnaliser les modèles numériques de cœur afin d’améliorer les thérapies cardiaques.

Le cœur est un organe complexe dont la fonction est d’assurer la circulation du sang dans l’organisme. Il est constitué du cœur droit et du cœur gauche, chacun étant formé de deux cavités : une oreillette et un ventricule. Le ventricule droit envoie le sang vers les poumons tandis que le gauche se charge d’alimenter le reste du corps, cette éjection résultant de la contraction du myocarde (tissu cardiaque).

Cette description est à présent connue de tous, mais le rôle du cœur dans le corps humain est resté longtemps mystérieux. Durant l’Antiquité, les Grecs y localisaient les manifestations de l’âme, puisque la fréquence des battements du cœur est corrélée avec les émotions ressenties. Galien et ses disciples, au IIe siècle, ont correctement distingué les 2 réseaux sanguins, artériel et veineux, mais rendaient les seules artères responsables de la circulation du sang, le cœur étant vu comme un aspirateur du sang plutôt qu’une pompe. Au Xe siècle, Avicenne, médecin philosophe d’origine perse, décrivit le rôle des ventricules et des valves cardiaques, mais ce fut Ibn al-Nafis, savant universel arabe du XIIe siècle, qui découvrit la circulation sanguine, en particulier la circulation pulmonaire. En Occident, 5 siècles plus tard, William Harvey compléta les travaux de Ibn al-Nafis en mettant en évidence le rôle des capillaires et en faisant une analyse quantitative de la fonction cardiaque.

Anatomie du cœur en 3D (© INRIA / Asclepios).
L’imagerie par résonance magnétique permet de reconstruire en 3D l’anatomie du cœur. Pour l’obtenir à partir de l’image réelle du cœur, on doit déterminer ses contours sur chaque coupe de l’image.

La connaissance de la physiologie du cœur a fait des progrès considérables depuis le XVIIe siècle, le siècle de Harvey, plus connu comme celui de Louis XIV. Conséquence positive de ce progrès, la prise en charge des maladies cardiovasculaires, première cause de mortalité en Occident, est en partie responsable de l’allongement de l’espérance de vie, inférieure à 25 ans au XVIIe siècle et supérieure à 80 ans de nos jours. En France, on dénombre cependant encore quelque 150 000 morts par an d’origine cardiovasculaire, soit un tiers du total des décès. Afin d’améliorer le diagnostic et la thérapie de ces maladies, mais aussi d’approfondir la connaissance de la fonction cardiaque, une nouvelle discipline scientifique s’est développée depuis près d’une vingtaine d’années : la modélisation numérique du système cardiovasculaire. L’objectif de ces modèles est de fournir une description mathématique, quantitative, objective et tridimensionnelle de la fonction cardiaque, complémentaire de celle utilisée traditionnellement dans la formation médicale, qui est littéraire, qualitative et graphique.

Les myocytes du cœur (© INRIA / Asclepios).
L’imagerie par résonance magnétique et en particulier l’imagerie dite de « tenseur de diffusion » permet l’observation de la structure des fibres du cœur. Celles-ci s'enroulent autour de l'axe du cœur.

Bien sûr, mettre au point une telle description universelle relève de l’utopie, tant la machine cardiaque est complexe. Une première source de complexité vient du fait que plusieurs phénomènes physiques et chimiques entrent en jeu lors d’un battement cardiaque. En effet, la contraction est contrôlée par la propagation, des oreillettes aux ventricules, d’une onde dite de dépolarisation électrique. Celle-ci est induite par la dépolarisation de proche en proche des cellules musculaires (passage d’un potentiel négatif à une valeur positive), qui ensuite se repolarisent, et ainsi de suite. La capacité du tissu cardiaque à se contracter dépend aussi de l’apport d’oxygène aux cellules par les artères coronaires (perfusion). Enfin, la pression et le débit du sang dans les artères, les veines et les cavités cardiaques commandent la contraction et la relaxation du muscle cardiaque et en résultent tout à la fois. Tous ces phénomènes physiques (électrophysiologie, perfusion, mécanique des fluides et des structures) sont donc intimement couplés les uns aux autres et sont essentiels à la compréhension du système cardio-vasculaire.

Autre source de complexité, les principes physico-chimiques impliqués interviennent à des échelles de temps et d’espace très étendues. Par exemple, pour comprendre les troubles du rythme cardiaque, il est indispensable de bien comprendre les migrations d’ions qui interviennent au niveau de la cellule cardiaque dont la taille est de l’ordre de plusieurs microns (10-6 m). Par contre, les régions du cœur altérées à la suite d’un infarctus du myocarde ont une taille de l’ordre du centimètre (10-2 m). De même, le cycle cardiaque a une durée de l’ordre de la seconde, mais l’évolution de la forme du cœur après une intervention chirurgicale (phénomène appelé remodelage) s’établit sur plusieurs semaines. Enfin, le dernier obstacle à surmonter pour la modélisation numérique du cœur est l’infinie variabilité de forme et de comportement qui existe entre les individus, en raison de la génétique, mais aussi de la présence de maladies cardiaques.

Malgré ces difficultés, les travaux de recherche sur la modélisation physique et physiologique du cœur ont débuté, il y a près de quarante ans, au sein de l’université d’Oxford en Grande-Bretagne, ainsi qu’à l’institut de Bio-ingénierie de l’université d’Auckland en Nouvelle-Zélande.

Ils se sont amplifiés depuis lors, dans plusieurs autres centres de recherche, dont l’INRIA en France, qui a lancé l’action CardioSense3D en 2005. Les objectifs en sont à la fois plus modestes et plus ciblés que ceux énoncés précédemment. Plutôt que de décrire de manière universelle le fonctionnement du cœur, ces recherches se concentrent principalement sur les phénomènes électriques et mécaniques intervenant à l’échelle macroscopique (à l’échelle des tissus et non de la cellule). Par ailleurs, en vue d’améliorer le diagnostic et la thérapie de malades souffrant de maladies cardiovasculaires, on cherche à personnaliser ces modèles numériques, c’est-à-dire à représenter le cœur d’un patient à partir de données acquises lors d’examens cliniques. Par exemple, la fréquence cardiaque et la pression sanguine sont couramment acquises lors d’un examen médical et fournissent des renseignements quantitatifs sur le flot sanguin et le battement du cœur d’un patient. De même, l’imagerie échographique, scanner ou par résonance magnétique fournit des informations en trois dimensions sur l’anatomie du cœur et des vaisseaux sanguins, mais aussi sur le mouvement cardiaque. Enfin, l’électrocardiogramme ou encore l’exploration électrophysiologique par cathéters permettent de connaître la forme et la vitesse des ondes électriques parcourant le cœur.

Ainsi, en fonction d’hypothèses sur la condition du cœur d’un patient, on en construit un modèle numérique en s’aidant des données disponibles. Le premier objectif du modèle est de reproduire fidèlement les observations visibles dans les images médicales. Le second objectif, plus ambitieux, est d’utiliser ce modèle pour prédire l’évolution de maladies cardiaques ou encore de mieux planifier une intervention thérapeutique (chirurgie, prise de médicaments...).

Simulation de l’activité électrique dans les 2 ventricules cardiaques
(© INRIA / Asclepios).
La simulation de l’activité électrique dans les ventricules d’un patient permet de voir, sur les zones sombres, les tissus nécrosés dus à un infarctus du myocarde et qui conduisent moins bien les ondes électriques.

Pour mettre en œuvre un modèle numérique du cœur, il faut tout d’abord définir un domaine de calcul sous la forme d’un maillage tridimensionnel. Ce maillage est reconstruit à partir d’images médicales du patient et sa taille varie de quelques dizaines de milliers à quelques millions d’éléments, en fonction de la nature des phénomènes que l’on cherche à simuler. Sur ce maillage, il est nécessaire d’ajouter des informations anatomiques comme l’emplacement des valves cardiaques ou encore l’orientation des fibres cardiaques. En effet, le cœur est un muscle constitué de minuscules fibres qui se contractent et se relâchent durant le cycle cardiaque. Ces fibres s’enroulent autour des cavités cardiaques et leur structure joue un rôle important pour la mécanique et l’électrophysiologie cardiaques.

En plus de ce domaine de calcul, on définit des équations mathématiques qui représentent les phénomènes physiques, généralement couplés, que l’on souhaite étudier. Ces équations définissent comment certaines variables, comme le potentiel électrique ou la position d’un point du ventricule gauche, évoluent au cours du cycle cardiaque. Bien sûr, les équations incluent des paramètres comme la diffusivité électrique ou la raideur du muscle, dont la valeur influence l’évolution des grandeurs physiques.

Simulation de la contraction des 2 ventricules cardiaques depuis la phase de remplissage (A et D) vers la phase d'éjection (C et F) (© INRIA / Asclepios).

Ces équations sont ensuite discrétisées sur le domaine de calcul et sont résolues par ordinateur. Pour simuler les quatre phases (remplissage, contraction, éjection et relaxation) d’un seul battement du cœur, dont la durée est de l’ordre de la seconde, il faut entre 10 minutes et plusieurs heures de calcul, en fonction de la complexité du modèle. Pour personnaliser le modèle, il faut enfin estimer les paramètres des équations, afin que la simulation corresponde aux observations disponibles pour un patient donné. C’est un problème difficile, car il est hors de question de tester toutes les combinaisons de paramètres possibles. D’où l’idée de faire appel à des méthodes d’assimilation de données, plus couramment utilisées dans d’autres domaines, comme la météorologie. Elles consistent à affiner le modèle de manière itérative jusqu’à minimiser l’écart entre les quantités simulées et les quantités observées : volume de sang éjecté, électrocardiogramme...

La validation de tels modèles est un travail de longue haleine, qui mobilise des experts en informatique, traitement d’images, mathématiques appliquées, mais aussi des médecins cardiologues. Une première étape de cette validation consiste à simuler numériquement le battement du cœur dans des situations normales et en présence de pathologies cardiaques, puis de vérifier qu’il y a une bonne adéquation entre le comportement simulé et celui décrit par les experts en cardiologie. Une seconde étape permet de tester le caractère prédictif du modèle. Pour cela, on personnalise un modèle du cœur à partir de données (images et signaux bioélectriques) d’un patient et on prédit le comportement cardiaque, lorsque celui-ci est soumis à une thérapie ou de nouveaux stimuli. Par exemple, une procédure courante en cardiologie consiste à stimuler artificiellement le cœur à l’aide de sondes de stimulation (appelées aussi pacemakers). Des travaux récents effectués par l’INRIA et l’hôpital Saint-Thomas de Londres, ont ainsi pu montrer sur un petit nombre de patients qu’un modèle électromécanique du cœur pouvait prédire le comportement mécanique du cœur résultant de stimulations artificielles. À terme, une application de ces travaux pourrait donc être l’optimisation de la pose de stimulateurs cardiaques, mais aussi une meilleure sélection des patients susceptibles de bénéficier de cette thérapie. D’autres applications sont envisagées telle une meilleure prise en charge des patients souffrant de troubles du rythme, grâce à une planification plus précise de l’ablation par radiofréquence de tissus cardiaques.

Pour en savoir plus, quelques liens sur le Web.

Cet article est paru dans la revue DocSciences n°13 Informatique et médecine, éditée par le CRDP de l'Académie de Versailles en partenariat avec l'INRIA.